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Outline

High-dimensional deformable Framework for DW-MRI analysis
registration of DW-MRI via a surface representation of
with DTI-TK white matter tracts




Why spatial normalization”?

e Characterize disease effects on white matter
e Deformation-based morphometry

¢ \/oxel-based morphometry

e Create white matter atlases

e Study average anatomy, variability in
anatomy, changes over time

e Enable more robust fiber tractography




Registration of diffusion tensor images

¢ Registering the corresponding T1 images
e Xu et al, MBRM 03

¢ Registering the DTI-derived FA images
e Jones et al, Neurolmage 02
¢ Andersson et al, FMIRB technical report 07

¢ Registering the tensor images themselves

e Alexander et al, CVIU 00

Park et al, Neurolmage 03

Zhang et al, MedIA 06

Van Hecke et al, IEEE TMI 07

Yeo et al, IEEE TMI 09




Diffusion-tensor imaging (DTI) reveals the
organization of white matter

?:




But how can image registration algorithms e
adapted to DTl data”?

How to best measure
similarity between DT

images?
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Measuring similarity between two DT images

o (1)




What properties of the diffusion tensor
should use for image matching?

Pierpaoli et al., 1996: No significant differences in
trace between white matter regions




DTI-TK tensor metric:
Fuclidean distance between “deviatoric” tensors

Tensor similarity:
R R 2
u(Dy,Dy) £ \/Tl“ [(Dl — Dz) ]

Deviatoric tensor:
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But how can image registration algorithms e
adapted to DTl data”?

Interplay between
transformation and
tensor orientation
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Treating DTl as “multi-channel” images results in
nonsensical spatial transformations

Tensor
Reorientation

(Alexander et al, IEEE TMI 01)




Tensor reorientation: rigid transformation case
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Tensor reorientation: non-rigid transformation case
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Tensor reorientation:
preservation of principal direction

Reorient tensor D’ = QDQ"' such that €1, the
principal eigenvector of D’, coincides with Me;




Tensor reorientation:
finite strain

Reorient with rotation matrix () that is
the closest approximation of M

Q" = argénin |Q — M|




Efficient implementation of finite strain reorientation
in DTI-TK

e Deformable transformation modeled as piecewise affine deformation
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e Affine transforms modeled via polar decomposition as pure rotation (Q) and
shape matrix (S):

¢i(x) = M;x + T; M; = Q;5;

Q is the finite
e Overall objective: strain solution!

arg mip Z /,u [Ds(qbi(x)), Qth(X)QH dx + Eieg(®1,...,0N)
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FA-based normalization Tensor-based normalization

Template image

(With orientation)

(Without Orientation)

(Target)



Tensor-based normalization improves the sensitivity
of the detection of FA differences in ALS

¢ Task-driven evaluation of three normalization approaches
- White matter changes in ALS as measured by FA
- Cross-sectional design with 8 controls and 8 patients
e Key findings
- Increased sensitivity of detected FA changes with tensor-based approach

- Reduced susceptibility to false-positives due to shape confounds

p-value = 0.0037

H Zhang et al, IEEE TMI 07




First systematic comparison of publicly available
DTI registration tools (Wang et al, Neurolmage 11)

¢ FA-based registration tools

¢ |RTK (Schnabel et al, MICCAI 01)

FNIRT (Andersson et al, FMRIB technical report 07)

Demons (Vercauteren et al, IPMI 07)

Log Demons (Vercauteren et al, MICCAI 08)

Fluid (Joshi et al, Neurolmage 04)

¢ Tensor-based registration tools
e DTI-TK (H Zhang et al, MedIA 06)
e MedINRIA (Yeo et al, IEEE TMI 09)

DTI-TK reported as top performer for the authors’ application




Constructing population-specific white matter
atlases

Guimond et al, CVIU 00

Zhang et al, MICCAI 07

DTI-TK provides an implementation




Improved registration allows generation of better
white matter atlases
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Zhang et al., WBIR 2010. White matter atlas of 51 older healthy adults




Outline

A surface-based framework

A specialized method for DTI
registration and atlas-building

for DTI population studies




Tract-Specific Analysis (TSA):
at the intersection of two WM analysis paradigms

origin

Curve-based tract representation TBSS: Skeleton-based white matter representation
(e.g. Corouge et al., MedIA, ‘06) (Smith et al., Neuroimage, ‘06)




TSA Framework

Surface-Based

Fasciculus

Normalization

Modeling

Segmentation

Representation via

Bl S e e W Ak Fiber tracking geometrical models

Tract-Wise

Track grouping and labeling Statistical Mapping

Visualization
and Flattening




Normalization to common anatomical space
enhances fiber tractography

Segmentation via Deterministic Tractography, following Mori et al., 2002; Wakana et al., 2004




Deformable medial models are fitted to
sheet-like white matter tracts

object

skeletonization

skeleton




Deformable medial models are fitted to
sheet-like white matter tracts

object

boundary representation

skeletonization

target object

e
?

inverse skeletonization update model
| parameters

skeleton

parametric medial model




Surface-based modeling of major sheet-like tracts

fibers segmentation cm-rep skeleton cm-rep boundary
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Surface-based modeling of major sheet-like tracts

Six sheet-like fasciculi Surface representation




Tract-specific statistical inference

Model and fibers

Dimensionality Reduction

Tract-wise t-map Subject FA Maps
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3D t-statistic map

Results shown are ADC difference maps from a 22q11.2 deletion

syndrome study (Tony J. Simon, PI)

ADC cluster z-score

2D FWER-controlled cluster analysis




TSA examples: white matter changes in AD/FTD
(30-directional DW-MRI)

AD 23f/21m | 67.8 (10.9)
FTD 27f/35m | 66.5(7.6)
CTL 16f/8m | 66.1(8.9)

Reduced FA in AD vs. CTL

s

Reduced FAIin AD vs. FTD

Reduced FAIn FTD vs. CTL




Subject-space TSA:
combined analysis of FA and thickness in ALS

thickness
(—

Zhang et al., MedIA 2011




Conclusions

¢ Full tensor information should be used for DTI volume registration
¢ Tensor reorientation is required prior to tensor matching

¢ Population-specific atlases derived from DTI normalization allow excellent
fiber tractography

e Surface-based representation of sheet-like tracts facilitates tract-specific
statistical analysis

¢ All tools are part of free DTI-TK software

WWW.Nitrc.org/projects/dtitk
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